

NORTH CAROLINA Department of Transportation

Updates on DLTi, SaFID, and Reverse RCI

For RTA Innovations and Solutions Forum Joe Hummer, PhD, PE, State Traffic Mgmt Engineer April 15, 2020

Problem

Dynamic Left Turn Intersection

Potential Solution--DLTi Peak Off-Peak

Dynamic Left Turn Intersection

- Operate as dual left turn lane during peak
 Protected (green arrow) left turn signal
- Close second lane during off-peak
 - Operate as single left turn lane
 - Protected/permitted (flashing yellow arrow)
 left turn signal
 - Positive offset left turn
- Use lane control signs

- Like on Edwards Mill Road near PNC Arena

Site Selection Criteria

- Dual left turn lane
- Goldilocks demand
 - Enough demand to matter
 - Do not need dual left turn lanes off-peak
- Plentiful sight distance
 Could have been permitted left turn
- Compatible signal software

Tryon at Cary Parkway, Cary

Estimated Benefits

Dimension	Tryon Road
Left turns in DLTi lanes/day	3,200
Left turns in DLTi lanes, % of total demand	7
Hours/day operated with DLTi	15
Left turn delay savings, sec/veh	7
All vehicle delay savings, sec/veh	0.4
All vehicle delay savings, veh-hr/year	2,100
Delay savings benefit, \$/year	27,000
Installation cost, \$	33,000

Current Status

- Operational February 14, 2020
 20 hours per day
- PR campaign
- Changeable message sign
- Additional work so Cary cameras can view

Compliance and Reaction

- Some negative public reaction
- Leaders have held steady
- Based on several informal observations, we think we are getting about 80 percent compliance on average

Clueless?

That-a-way!

Lessons Learned Already

- Need to clearly convey expected benefit
- Need to add sign explaining X
- Heavy demand on right side just after DLTi
- Trucks "trapped" in left lane
- What is target compliance level?

Down the Road

- After study to be completed asap
- Potential second site, US-70 Business at Walmart in Clayton
- If reasonable cost, maintenance needs, safety impact, public reaction, ...
- Publish our findings for other states
- Look for other sites statewide
 - Build into TIP projects
 - Retrofit with Spot Mobility funds
- Think about other time-of-day innovations

Thank You!

- Joe Milazzo and RTA
 - Had the idea, cleared devices with FHWA, gently pushed
- NCDOT Board and management
 - Fostering a culture of innovation
- Town of Cary, Division 5, Division 4
- Many professionals trying to help

Selecting an Intersection Design

- We have funding to improve an intersection
- We have a traffic forecast
- There are several design alternatives
- We can do modelling to estimate travel times for each alternative
- We can see what fits
- Before we choose an alternative, shouldn't we also consider safety?

Happily, We Live in the Golden Age of CMFs

- Crash modification factor (CMF)
 Before crash freq * CMF = after crash freq
- Hundreds of millions of dollars on safety research during past 25 years
- Thousands of CMFs stored at the Clearinghouse at UNC-CH
 - Hundreds of countermeasures
 - Variety of crash types, location types, etc.
 - Quality of study ratings

Good Clearinghouse CMFs for Intersections

Changing from	Changing to	Average CMF for	Average CMF for	
		all crashes	injury crashes	
Two-way stop control	All-way stop control	0.32	0.28	
	Conventional signal	0.81	0.74	
	One-lane roundabout	0.51	0.16	
	Unsignalized reduced conflict	0.58	0.42	
	intersection (RCI)			
Conventional signal	One-lane roundabout	0.74	0.45	
	Two-lane roundabout	0.89	0.54	
	Signalized RCI	0.85	0.78	

- Good CMFs available outside the Clearinghouse for median u-turns and continuous flow intersections
- Other than quadrant roadways and offset intersections, we now have a pretty full set of intersection CMFs!

Safest Feasible Intersection Design (SaFID) for All Crashes

				Minor street						
			Number through lanes:	2			4		6 or 8	
Major street		Low AADT:	0	5,000	7,500	10,000	10,000	25 000 and		
Number through lanes	Low AADT	High AADT	High AADT:	5,000	7,500	10,000	15,000	25,000	above	Any
2	0	7,500		All-way stop	All-way stop	n/a	n/a	n/a	n/a	n/a
	7,500	15,000		One-lane roundabout	One-lane roundabout	One-lane roundabout	One-lane roundabout*	n/a	n/a	n/a
4	10,000	15,000		Unsignalized RCI	Unsignalized RCI	Unsignalized RCI	Signalized RCI	Signalized RCI	n/a	n/a
	15,000	20,000		Unsignalized RCI	Unsignalized RCI	Signalized RCI	Signalized RCI	Signalized RCI	n/a	n/a
	20,000	25,000		Unsignalized RCI	Signalized RCI	Signalized RCI	Signalized RCI	Signalized RCI	n/a	n/a
25,000 and above			Unsignalized RCI	Signalized RCI	Signalized RCI	Signalized RCI	Signalized RCI	Median u- turn	n/a	
6 or 8	Ar	ny		Unsignalized RCI	Signalized RCI	Signalized RCI	Signalized RCI	Signalized RCI	Median u- turn	Median u- turn

* One-lane roundabouts are generally feasible if the combined AADT is less than 25,000. If a one-lane roundabout is infeasible a signal is the safest feasible design.

SaFID for Injury Crashes

				Minor street						
			Number through lanes:	r 1 :			4		6 or 8	
Major street		Low AADT:	0	5,000	7,500	10,000	10,000	25 000 and		
Number through lanes	Low AADT	High AADT	High AADT:	5,000	7,500	10,000	15,000	25,000	above	Any
2	0	7,500		All-way stop	All-way stop	n/a	n/a	n/a	n/a	n/a
	7,500	15,000		One-lane roundabout	One-lane roundabout	One-lane roundabout	One-lane roundabout*	n/a	n/a	n/a
4	10,000	15,000		Unsignalized RCI	Unsignalized RCI	Unsignalized RCI	Two-lane roundabout	Two-lane roundabout	n/a	n/a
	15,000	20,000		Unsignalized RCI	Unsignalized RCI	Two-lane roundabout	Two-lane roundabout	Two-lane roundabout	n/a	n/a
	20,000	25,000		Unsignalized RCI	Two-lane roundabout	Two-lane roundabout	Two-lane roundabout	Two-lane roundabout**	n/a	n/a
	25,000 a	nd above		Unsignalized RCI	Two-lane roundabout**	Two-lane roundabout**	Two-lane roundabout**	Two-lane roundabout**	Median u- turn	n/a
6 or 8	Aı	лy		Unsignalized RCI	Median u-turn	Median u-turn	Median u-turn	Median u-turn	Median u- turn	Median u- turn

* One-lane roundabouts are generally feasible if the combined AADT is less than 25,000. If a one-lane roundabout is infeasible a signal is the safest feasible design.

** Two-lane roundabouts are generally feasible if the combined AADT is less than 45,000. If a two-lane roundabout is infeasible a median u-turn is the safest feasible design.

What About...

- Two-way stop control
- Conventional signals
- Jughandles
- Continuous green T's

Many Possible Reasons Not To Choose the SaFID

- The CMF does not apply

 Careful! No model is ever perfect
- Operations
- Right of way/cost/impact
- Pedestrians/bicycles

 NCHRP 7-25 report coming soon

SaFID Conclusion

- SaFID charts are now available
 Good CMFs for many intersections
- The SaFID should be the default choice
 - Burden of proof should be on proponent of less-safe design
- Many reasons to choose another design
- We need more safety research
- Paper to appear in May ITE Journal

Finally, Let's Talk Reverse RCI RCI Reverse RCI

Tough Compromise

Parameter	RCI	Reverse RCI		
Purpose	Safety, efficiency, progression, pedestrians	Compromise with heavier minor left turn		
Number installed in NC	~150	~4		
Number of movements redirected	4	4		
Type of signal	Half	Full		
Number of signal phases	2	3		
CMF, signalized, all crash	0.85	Unknown		
Cost and impacts	Mostly at two bulb-outs	Same as RCI		
Pedestrians	31% score in "20-flag" analysis	35% score in "20-flag" analysis		

Is a Partial Median U-Turn Better?

- Example at 36th and State, Boise, ID
- Only redirects major street left turns

 All minor street movements made directly
- Full signal
- Three phases
- Impacts same as RCI and reverse RCI
- Pedestrians one-stage crossing but longer cycle, 27% score in "20-flag" analysis

Capacity Example

- Critical lane method
- Keeping numbers of lanes equal
- 2040 forecast, US-15/501 (54,000 vpd) at Elliott Road (10,000 vpd), Chapel Hill
- Conventional v/c = 0.92
- RCI v/c = 0.79
- Reverse RCI v/c = 0.81
- Partial MUT v/c = 0.79

There Are Several Similar Three-Phase Alternatives

- "Maryland left" redirects side street throughs
- "Seven-phase signal" redirects one side street through
- Redirect one side street left and the adjacent side street through

Reverse RCI Conclusion

- Tough compromise
- Partial median u-turn may be better
 Only redirects two movements
- There are many three-phase alternatives
- Will drivers understand?
- Need more research
 - Driving simulation, crash stats, software, ...

Thank You!

- Let's go fix some intersections and interchanges
- Joe Hummer
 - -919-814-5040, jehummer@ncdot.gov

